Copied to
clipboard

G = C22.2D56order 448 = 26·7

1st non-split extension by C22 of D56 acting via D56/D28=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22.2D56, C23.31D28, C14.9C4≀C2, (C2×D28)⋊2C4, C4⋊Dic74C4, C22⋊C82D7, (C2×C14).1D8, C287D4.1C2, (C2×C28).440D4, (C2×C14).2SD16, C14.6(C23⋊C4), (C22×C14).40D4, (C22×C4).55D14, C72(C22.SD16), C2.3(C2.D56), C2.7(D284C4), C22.2(C56⋊C2), C14.11(D4⋊C4), C14.C4226C2, C22.59(D14⋊C4), (C22×C28).41C22, C2.7(C23.1D14), (C7×C22⋊C8)⋊2C2, (C2×C4).13(C4×D7), (C2×C28).25(C2×C4), (C2×C4).211(C7⋊D4), (C2×C14).42(C22⋊C4), SmallGroup(448,27)

Series: Derived Chief Lower central Upper central

C1C2×C28 — C22.2D56
C1C7C14C2×C14C2×C28C22×C28C287D4 — C22.2D56
C7C2×C14C2×C28 — C22.2D56
C1C22C22×C4C22⋊C8

Generators and relations for C22.2D56
 G = < a,b,c,d | a2=b2=c56=1, d2=a, cac-1=ab=ba, ad=da, bc=cb, bd=db, dcd-1=ac-1 >

Subgroups: 636 in 90 conjugacy classes, 29 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, Dic7, C28, D14, C2×C14, C2×C14, C2.C42, C22⋊C8, C4⋊D4, C56, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×C14, C22.SD16, C4⋊Dic7, D14⋊C4, C2×C56, C2×D28, C22×Dic7, C2×C7⋊D4, C22×C28, C14.C42, C7×C22⋊C8, C287D4, C22.2D56
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, D8, SD16, D14, C23⋊C4, D4⋊C4, C4≀C2, C4×D7, D28, C7⋊D4, C22.SD16, C56⋊C2, D56, D14⋊C4, C23.1D14, C2.D56, D284C4, C22.2D56

Smallest permutation representation of C22.2D56
On 112 points
Generators in S112
(1 70)(3 72)(5 74)(7 76)(9 78)(11 80)(13 82)(15 84)(17 86)(19 88)(21 90)(23 92)(25 94)(27 96)(29 98)(31 100)(33 102)(35 104)(37 106)(39 108)(41 110)(43 112)(45 58)(47 60)(49 62)(51 64)(53 66)(55 68)
(1 70)(2 71)(3 72)(4 73)(5 74)(6 75)(7 76)(8 77)(9 78)(10 79)(11 80)(12 81)(13 82)(14 83)(15 84)(16 85)(17 86)(18 87)(19 88)(20 89)(21 90)(22 91)(23 92)(24 93)(25 94)(26 95)(27 96)(28 97)(29 98)(30 99)(31 100)(32 101)(33 102)(34 103)(35 104)(36 105)(37 106)(38 107)(39 108)(40 109)(41 110)(42 111)(43 112)(44 57)(45 58)(46 59)(47 60)(48 61)(49 62)(50 63)(51 64)(52 65)(53 66)(54 67)(55 68)(56 69)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 104 70 35)(2 103)(3 33 72 102)(4 32)(5 100 74 31)(6 99)(7 29 76 98)(8 28)(9 96 78 27)(10 95)(11 25 80 94)(12 24)(13 92 82 23)(14 91)(15 21 84 90)(16 20)(17 88 86 19)(18 87)(22 83)(26 79)(30 75)(34 71)(36 56)(37 68 106 55)(38 67)(39 53 108 66)(40 52)(41 64 110 51)(42 63)(43 49 112 62)(44 48)(45 60 58 47)(46 59)(50 111)(54 107)(57 61)(65 109)(69 105)(73 101)(77 97)(81 93)(85 89)

G:=sub<Sym(112)| (1,70)(3,72)(5,74)(7,76)(9,78)(11,80)(13,82)(15,84)(17,86)(19,88)(21,90)(23,92)(25,94)(27,96)(29,98)(31,100)(33,102)(35,104)(37,106)(39,108)(41,110)(43,112)(45,58)(47,60)(49,62)(51,64)(53,66)(55,68), (1,70)(2,71)(3,72)(4,73)(5,74)(6,75)(7,76)(8,77)(9,78)(10,79)(11,80)(12,81)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,88)(20,89)(21,90)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,100)(32,101)(33,102)(34,103)(35,104)(36,105)(37,106)(38,107)(39,108)(40,109)(41,110)(42,111)(43,112)(44,57)(45,58)(46,59)(47,60)(48,61)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,104,70,35)(2,103)(3,33,72,102)(4,32)(5,100,74,31)(6,99)(7,29,76,98)(8,28)(9,96,78,27)(10,95)(11,25,80,94)(12,24)(13,92,82,23)(14,91)(15,21,84,90)(16,20)(17,88,86,19)(18,87)(22,83)(26,79)(30,75)(34,71)(36,56)(37,68,106,55)(38,67)(39,53,108,66)(40,52)(41,64,110,51)(42,63)(43,49,112,62)(44,48)(45,60,58,47)(46,59)(50,111)(54,107)(57,61)(65,109)(69,105)(73,101)(77,97)(81,93)(85,89)>;

G:=Group( (1,70)(3,72)(5,74)(7,76)(9,78)(11,80)(13,82)(15,84)(17,86)(19,88)(21,90)(23,92)(25,94)(27,96)(29,98)(31,100)(33,102)(35,104)(37,106)(39,108)(41,110)(43,112)(45,58)(47,60)(49,62)(51,64)(53,66)(55,68), (1,70)(2,71)(3,72)(4,73)(5,74)(6,75)(7,76)(8,77)(9,78)(10,79)(11,80)(12,81)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,88)(20,89)(21,90)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,100)(32,101)(33,102)(34,103)(35,104)(36,105)(37,106)(38,107)(39,108)(40,109)(41,110)(42,111)(43,112)(44,57)(45,58)(46,59)(47,60)(48,61)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,104,70,35)(2,103)(3,33,72,102)(4,32)(5,100,74,31)(6,99)(7,29,76,98)(8,28)(9,96,78,27)(10,95)(11,25,80,94)(12,24)(13,92,82,23)(14,91)(15,21,84,90)(16,20)(17,88,86,19)(18,87)(22,83)(26,79)(30,75)(34,71)(36,56)(37,68,106,55)(38,67)(39,53,108,66)(40,52)(41,64,110,51)(42,63)(43,49,112,62)(44,48)(45,60,58,47)(46,59)(50,111)(54,107)(57,61)(65,109)(69,105)(73,101)(77,97)(81,93)(85,89) );

G=PermutationGroup([[(1,70),(3,72),(5,74),(7,76),(9,78),(11,80),(13,82),(15,84),(17,86),(19,88),(21,90),(23,92),(25,94),(27,96),(29,98),(31,100),(33,102),(35,104),(37,106),(39,108),(41,110),(43,112),(45,58),(47,60),(49,62),(51,64),(53,66),(55,68)], [(1,70),(2,71),(3,72),(4,73),(5,74),(6,75),(7,76),(8,77),(9,78),(10,79),(11,80),(12,81),(13,82),(14,83),(15,84),(16,85),(17,86),(18,87),(19,88),(20,89),(21,90),(22,91),(23,92),(24,93),(25,94),(26,95),(27,96),(28,97),(29,98),(30,99),(31,100),(32,101),(33,102),(34,103),(35,104),(36,105),(37,106),(38,107),(39,108),(40,109),(41,110),(42,111),(43,112),(44,57),(45,58),(46,59),(47,60),(48,61),(49,62),(50,63),(51,64),(52,65),(53,66),(54,67),(55,68),(56,69)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,104,70,35),(2,103),(3,33,72,102),(4,32),(5,100,74,31),(6,99),(7,29,76,98),(8,28),(9,96,78,27),(10,95),(11,25,80,94),(12,24),(13,92,82,23),(14,91),(15,21,84,90),(16,20),(17,88,86,19),(18,87),(22,83),(26,79),(30,75),(34,71),(36,56),(37,68,106,55),(38,67),(39,53,108,66),(40,52),(41,64,110,51),(42,63),(43,49,112,62),(44,48),(45,60,58,47),(46,59),(50,111),(54,107),(57,61),(65,109),(69,105),(73,101),(77,97),(81,93),(85,89)]])

79 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H7A7B7C8A8B8C8D14A···14I14J···14O28A···28L28M···28R56A···56X
order122222244444444777888814···1414···1428···2828···2856···56
size11112256224282828285622244442···24···42···24···44···4

79 irreducible representations

dim111111222222222222444
type++++++++++++
imageC1C2C2C2C4C4D4D4D7D8SD16D14C4≀C2C4×D7C7⋊D4D28C56⋊C2D56C23⋊C4C23.1D14D284C4
kernelC22.2D56C14.C42C7×C22⋊C8C287D4C4⋊Dic7C2×D28C2×C28C22×C14C22⋊C8C2×C14C2×C14C22×C4C14C2×C4C2×C4C23C22C22C14C2C2
# reps11112211322346661212166

Matrix representation of C22.2D56 in GL4(𝔽113) generated by

1000
0100
001120
0021
,
1000
0100
001120
000112
,
122900
844300
00111111
00662
,
13900
1910000
00150
0097112
G:=sub<GL(4,GF(113))| [1,0,0,0,0,1,0,0,0,0,112,2,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,112,0,0,0,0,112],[12,84,0,0,29,43,0,0,0,0,111,66,0,0,111,2],[13,19,0,0,9,100,0,0,0,0,15,97,0,0,0,112] >;

C22.2D56 in GAP, Magma, Sage, TeX

C_2^2._2D_{56}
% in TeX

G:=Group("C2^2.2D56");
// GroupNames label

G:=SmallGroup(448,27);
// by ID

G=gap.SmallGroup(448,27);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,85,92,422,387,100,1123,570,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^56=1,d^2=a,c*a*c^-1=a*b=b*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=a*c^-1>;
// generators/relations

׿
×
𝔽